侵权投诉

搜索
更多>> 热门搜索:
当前位置:

OFweek工控网

自动化软件

正文

如何通过机器学习预测维护设备?

导读: 在未来,不管你是食品加工还是电子生产或者是汽车制造商,都离不开大数据,数据将是新时代的黄金。厂商在生产过程利用数据提高效率,提升生产的可靠性,或降低整体成本。

物联网技术正在连接工业现场的所有设备,相关人员可以远程访问工厂甚至了解了机器的健康状况,虚拟世界与现实世界的边界越来越模糊,工业数字化时代已经到来,企业将获取来自于设备层的丰富数据,并用于创造更大的价值收益。

数字化的巨大价值逐渐被工业企业认识到,越来越多的企业开始投入资金去升级系统,从被动式的设备维护到主动式的预测性维护转变。在过去,不合理的机器使用让工厂承受很大的损失,而预测性维护将发挥重要作用,可以帮助企业更好地诊断设备问题,提升生产的效率和降低成本支出。

在未来,不管你是食品加工还是电子生产或者是汽车制造商,都离不开大数据,数据将是新时代的黄金。厂商在生产过程利用数据提高效率,提升生产的可靠性,或降低整体成本。

image.png

预测性维护减少停机风险

熟悉工业物联网的工厂管理者都知道,目前数字化制造最大的卖点之一是预见未来的情况,通过数据分析可以获得对设备性能和过程有效性的洞察力,从而让设备管理者知道如何优化生产,最终为公司创造更大的利益。

预测性维护的实现改变了传统工业设备管理的方式,设备使用寿命分析可以预估设备维护的时间点,可以根据设备状况做出关于何时维护系统的明智决策,而不是等设备故障时再进行响应或进行维护。

停机维护可能会让工厂浪费更多的生产资源,预测性维护可以最大限度减少计划外停机的时间,从而增长整体机器运行时间和提升产量,而不需要产生新的资本支出。不过,要进行准确的预测维护,必需从大量数据中进行分析,实现这一目标是具有挑战性的。

工业维护中使用机器学习

大数据处理分析过程中少了不人工智能,利用机器学习算法进行处理,是解决大量数据分析的重要方法。工厂可以对算法进行培训,让机器自动识别生产数据中的异常表现,不仅是标出有问题的数据,还要分析出根本原因。

1  2  下一页>  
声明: 本网站所刊载信息,不代表OFweek观点。刊用本站稿件,务经书面授权。未经授权禁止转载、摘编、复制、翻译及建立镜像,违者将依法追究法律责任。

我来说两句

(共0条评论,0人参与)

请输入评论

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

  • 机械
  • 自动化
  • 单片机
  • 猎头职位
更多
文章纠错
x
*文字标题:
*纠错内容:
联系邮箱:
*验 证 码:

粤公网安备 44030502002758号