侵权投诉

搜索
更多>> 热门搜索:
订阅
纠错
加入自媒体

AI走进工业物联网 逐步打造制造智能化

1969年PLC问世后,自动化技术在制造领域逐渐站稳脚步,如今已是全球制造系统的核心架构,由于制造系统讲究稳定,因此对新技术、新架构的接受速度向来缓慢,不过近年来消费市场快速变动,对全球制造业带来严峻挑战, 导入智能化架构成为业者永续经营的必要策略,而在新世代的制造系统中,工业物联网不仅成为核心架构,更会与AI(人工智能)结合,落实智能化愿景。

所有场域应用的物联网,其架构都相同,都是由传感器、通讯网络与云端管理平台所组成的3层架构,由传感器撷取设备数据,再经由通讯网络传送到上层云端平台储存、运算,最后再以分析出来的数据作为系统运作的决策参考,而在整体架构中, AI过去多被建置在上层的云端平台,透过强大的机器学习算法,分析由终端感测层传回的海量数据。

不过,机器学习算法需要一定的运算时间,其目的也多在解决制造业类似像是制程排程优化的长时间问题,对于制程中会遇到的实时问题反应与控制指令回馈会缓不济急,近两年边缘运算概念兴起,成为工业物联网的实时性问题的最佳答案。

上层AI多用于长期规划

边缘运算的做法是让终端设备具有一定的运算能力,具有边缘运算设计的工业物联网架构,必须先建立起一套数据流模式,当传感器撷取到设备的状态数据后,就将数据传送到通讯层的网关,网关再依照系统建构时的设定让数据分流, 需要实时处理数据传送到前端控制器,让自动化设备可以快速反应,需要储存累绩为长期数据的数据,则送往数据库储存,上层再透过运算平台分析出结果,提供管理者作为决策参考,因此现在完整的工业物联网, 其AI会被分别设计在会有终端与云端两部分,让分布式与集中式运算在架构中并存,彼此各司所职。

再从设备供应端在工业物联网的研究议题来看,现在主要是集中在4个方向,包括生产系统、产品质量、制程优化与数字建模。 在这4大方向中,各有其需要解决的问题,像是生产系统中,设备的状态感测、监控与预诊,产品质量的检测、预测,制程优化的参数设定、能源运用,数字建模的数字双生平泰建立等,透过工业物联网的数据撷取与分析,将可逐步解决这些问题, 提升系统整体效能。

在工业物联网中,AI主要用来做制程的优化与长期规画等非实时性决策,例如现在消费性市场的产品类别多样,制程系统的换线将成为常态,透过大数据与AI的运算,就可尽量缩短换线生产的停机时间,让排程优化。

进行产线排程时,需从机器环境、制程加工特性与限制、排程目标,依据工作到达达生产现场的情况区分,可分静态及动态排程两种,静态排程是到达生产现场时,其制造数目?固定且可一次完成的任务进行排程,后续如果出现新工作, 再并入下一次制程处理。 动态排程则是若制程连续、产品随机,而且数目不固定的到达生产现场,须不断的更新生?排程。

就上述两种排程方式来看,静态排程通常为少样多样方式,AI在其中要解决的问题,主要是透过深度学习算法分析各环节的时间与质量,不断的改进工序,让效能与质量优化;动态排程则用于少量多样生产,AI会针对不同产品的工序, 建立起换线模式,有不同产品上线时,即启动专属换线模式,尽量缩短停机时间,同时让产品维持固定质量。

边缘运算效益可快速浮现

由于工业物联网上层的AI建置,效益需要一段时间才浮现,不会是立竿见影的发生,而且对制造业者来说并非当务之急,因此目前投入者大多为大型制造业,中小规模的业者,则以底层的边缘运算为主。

目前中小企业的工业物联网建置,制造设备的预知保养与制程检测仍是两大主要功能,由于设备的无预警停机,将会造成整体产线停摆,轻则产在线的半成品报废,重则交期延宕影响商誉,设备保养过去多采人工记录方式,人员再按照时间维护, 不过这种方式除了有可能因人员疏失或懈怠,未能定时作业外,设备也有可能在未达维护时间时故障。

工业物联网中的设备预知保养可分两类,一种是直接在管理系统上设计提醒功能,主动告知相关人员维修时间,另一种则是由传感器侦测设备状态,若是出现异常,AI则会依据出现的状态频率,判断可能发生的情况,再做不同处理, 例如传感器发现马达的震动,有可能是轴心歪斜,系统会依据震动的大小与频率判断马达现在的状态,如果有可能会立即损坏,就马上告知设备维护人员停机更换,如果没有立即危险,则会让马达持续运作,并记录该马达的状况, 让管理人员自行决定维护时间,让产线可以维持稳定的运作效能。

边缘运算的另一种主要功能是制程检测,从目前AI的发展来看,图像处理占有70%以上的应用,在工业物联网架构中也是如此。 过去制程中多靠人眼检测产品质量,由于人眼容易疲劳,随着工作时间的拉长,检测质量会逐渐降低,再者,部分消费性产品的体积越来越小,产线速度越来越快,人眼已难以负荷,现在已被取代机器视觉所取代。

现在的机器视觉判断速度非常快,且精准度越来越高,不过其运作模式仍是贴合大量制造的制程为设计,其快速与精准的辨识,仅能适用于少数类型,在少量多样或混线生产的制程中仍力有未逮,而AI则可让机器视觉拥有学习能力, 未来的设备将可透过算法自我学习,遇到不一样的产品种类或瑕疵时,即可自主判断,不必再由管理人员重新设定、调整判别模式。

1  2  下一页>  
声明: 本文系OFweek根据授权转载自其它媒体或授权刊载,目的在于信息传递,并不代表本站赞同其观点和对其真实性负责,如有新闻稿件和图片作品的内容、版权以及其它问题的,请联系我们。

发表评论

0条评论,0人参与

请输入评论内容...

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

    文章纠错
    x
    *文字标题:
    *纠错内容:
    联系邮箱:
    *验 证 码:

    粤公网安备 44030502002758号