侵权投诉
搜索
更多>> 热门搜索:
订阅
纠错
加入自媒体

工业4.0转型升级需要注意哪些问题?

随着新一轮技术革命的到来,制造商开始思考工业4.0模式,利用物联网、大数据技术提升效率和增加收益。云计算和人工智能技术的进步,使得世界各地的制造系统和技术水平达到了一个新的高度。不过,虽然全球制造业都在积极转型智能制造,但仍然存在许多问题,阻碍工厂车间的优化、效率提升甚至导致安全隐患。

制造商在升级之前必需了解清楚,实现工业4.0要解决哪些问题,最终目的是要获得哪些功能价值。新一代信息技术可以帮助企业提升生产力,为管理者提供富有远见的洞察力,认识车间哪些因素可能会降低效率,会对公司的业务产生负面的影响,越来越多的智能制造平台在实现这样的功能。

工业4.0将使工厂变得比以往更加智能,但不代表通过自动化、大数据、物联网和云计算技术就能达到想要的效果。企业在升级过程应该把重点放在发出问题和解决问题上,并让员工参与到这个变革中,以理解必须采取哪些措施,才能让这些创新技术解决方案发挥出最大的潜力。

今天的工业物联网将生产过程的所有对象,包括机器设备、人和计算机连接起来,采集大量来自车间底层的数据,用于机器的健康监测、预测性维护、诊断分析、流程优化等,企业也将可能利用机器学习来处理和分析数据,获得更多可靠的见解。但在进行数字化过程中,工厂需要认识清楚一些关键的问题。

设备故障可能引发灾难

任何工厂设备都不可能一直运行下去,并保持同样的生产效率。当机器设备老化或者失效时必将导致生产的延迟,或者需要进行停机维护,同时也可能会严重影响员工的安全和业务的效益。

此外,工厂必需保证交付时间,机器故障引发的是一种灾难,为了按照市场需求的速度继续生产,公司可能不得不外包业务来满足生产需要,这可能是非常昂贵的。最终让企业付出更多成本,甚至有可能亏损。

总体而言,由于数据转换的复杂性和数据访问的复杂性,要获得正确的见解,前提是取得正确的数据,采集来的数据需要经过筛选和清洗。不过,传统设备过于老旧,有时无法获得合适的数据,这些都可能会成为制造商数字转换的障碍。

系统地收集和挖掘数据

工厂的日常运营不只是制造那么简单,从产品设计到原料采购、生产加工、测试、物流等,每一个环节都可以影响企业效益。为了使工厂有更高的效率,生产管理者每天都要对库存、供应、交付、质量、生产、客户支持、处理和日常管理等信息进行分析、监控和更新。

1  2  下一页>  
声明: 本网站所刊载信息,不代表OFweek观点。刊用本站稿件,务经书面授权。未经授权禁止转载、摘编、复制、翻译及建立镜像,违者将依法追究法律责任。

发表评论

0条评论,0人参与

请输入评论内容...

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

    文章纠错
    x
    *文字标题:
    *纠错内容:
    联系邮箱:
    *验 证 码:

    粤公网安备 44030502002758号