侵权投诉

搜索
更多>> 热门搜索:
订阅
纠错
加入自媒体

数字孪生的非典型问题:想用不敢用才最寂寞

2018-12-14 10:54
来源: 亿欧网

机器学习+数据挖掘,正在某种程度上激活数字孪生

大部分工业生产设备,本质上就是投入生产材料,产出生产结果的数据运算。其中资源使用数量、良品率、生产效率、生产结果,这些最关键节点也都是数据。如果我们放弃直接可视,保留物理特性的数字孪生,而仅仅把数据系统孪生出来,似乎在技术上并不需要面对特别的挑战。

随着云计算和数字化升级这些理念的兴起,越来越多的云服务商和企业数字化服务商,开始基于数据采集,提供数据层面的系统孪生服务,比如甲骨文很早就提供类似能力。

但是对于企业来说,比较尴尬的地方在于,我的机器被孪生之后,我到底能够得到什么呢?看到屏幕上一大堆数字在跑,这个似乎对于企业的意义并不大。所带来的提升无非两点,一个是企业管理者和工程师可以更精准的看到全局数据;二是企业数据有了备份,一旦出问题可以查询。

这两点当然也是有意义的,但与不菲的服务费相比,似乎就值得思考一下了。

而AI的到来,确切说就是数据挖掘技术与机器学习技术的融合,正在激活这种简陋版数字孪生的新活力。

在传统意义上,一间工厂里的各种原材料、设备、人员和质量检测,是分别独立的生产系统,相互合作更多凭借工人经验。所谓生产线,往往也是要给上一流程环节保留最大化生产时间,再进入下一流程中。

这就像一个大雾天的路口,因为害怕撞车,所以必须等前一辆车过去很远,后一辆车才敢开过去。极大的生产效率也就在其中被浪费。而假如我们利用机器学习技术,利用数字孪生体系中模拟生产环节的连接,也就可以剥开生产环节间的认知迷雾,用上帝视角来指挥车间里的交通。

当然,机器学习+工业数据的想象力远远不止于此。能耗问题、配料问题、次品出现原因,等等工业生产中的问题都可以用类似能力来解决。

所以说,AI带来的想象力,重新激活了数据孪生的企业应用价值。包括3D模拟机器,在很多AI算法的帮助下,预测受损点和检修时间也在成为可能。

结果这个故事变成了这样:在我们期待的全物理拟态数字孪生依旧遥远的今天,数字孪生却可能基于工业IoT+AI的落地,产生另一重价值。并且这个发展机遇,正在反向影响数字工业里的很多产业关系。

试用版数字孪生,同样让工业IoT亢奋不已

最后让我们聊一下,数字孪生技术今天在AI+工业里带来的一些改变。在聚焦越来越多活力的B端智能技术市场中,数字孪生的价值在于为企业提供一个可以备份、转移、在虚拟世界进行学习和逻辑分析的参照系。很多智能工业平台中都引入了数字克隆的部分,而为企业提供数字孪生基础上的增值服务,也在变得越来越多样。

在工业IoT体系中,比较主流的智能化要经历这样一个流程:

首先基于数据收集和传感体系,在尽量完善的部分搭建数据采集系统;

然后基于IoT云进行数据上传,这样企业就有了数字化基础;

而后采用数字孪生解决方案,在虚拟平台中搭建抽象化的工业设备镜像;

继而根据具体目标,利用深度学习算法一类的技术完成对数据的智能分析,给出优化生产流程的可行性分析;

最后基于分析结果,进行各环节的技术优化与人工优化。

这当然仅仅是个基础逻辑,在解决具体问题时,企业要经历千变万化的特殊问题处理。而数字孪生在整个工业智能化体系中,带给企业以很多新的可能性。比如:

1、工业IoT的门槛被降低。远程分析、数据集中监控等工业生产的互联网化方案成为可能性。一家企业不见得必须雇佣强大的数据专家或者AI学者,而可以通过数字孪生的方式远程找到工业优化方案。

2、定制化生产更加容易。通过数字孪生技术搭配AI,企业将更加容易解决定制化工业产品的设计与生产关系问题。精细化生产和快流程生产都变得更加容易。

3、企业的“经验”也可以被孪生。今天很多企业不愿意尝试数字化转型,原因在于企业中很多生产流程是一步步探索,手耳相传的抽象经验。盲目数字化可能会造成工人的不适应,反而降低生产效率。而数字孪生带来的另一个可能,是基于机器视觉和数据吸收装置,企业可能将生产经验、流程习惯等无法具现化的东西,在数据平台上孪生出来。达成行业经验与工业实体的数字融合。

虽然目前我们只能用到试用版的简装数字孪生技术,甚至很可能不叫这个名字。但是放在一个技术体系的改观里,这项技术确实可能带给实体经济以不小的启迪。虽然影子飞机那样的数字孪生可能还有在等上若干年,但是又有什么所谓呢。

就让预测归预测,实干归实干,很多技术并不一定要等到完全成熟才可以应用,这个非典型案例里,或许能让我们获得一种比较典型的技术可能性。

<上一页  1  2  
声明: 本文系OFweek根据授权转载自其它媒体或授权刊载,目的在于信息传递,并不代表本站赞同其观点和对其真实性负责,如有新闻稿件和图片作品的内容、版权以及其它问题的,请联系我们。

发表评论

0条评论,0人参与

请输入评论内容...

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

    文章纠错
    x
    *文字标题:
    *纠错内容:
    联系邮箱:
    *验 证 码:

    粤公网安备 44030502002758号