侵权投诉

搜索
更多>> 热门搜索:
订阅
纠错
加入自媒体

装备制造业在智能制造背景下进行产业升级

从总体上讲,我国装备制造业发展明显加快,形成了具备较好物质技术基础的独立工业体系,重大技术装备自主化水平显著提高,国际竞争力进一步提升。虽然取得了一些研究成果,但是根据国内装备制造业智能化的实际应用情况来看,智能化只是解决了制造效率低和精度低的问题,没有达到智能制造应用的设计水平。产品在市场上的竞争力偏弱,市场供求关系仍存在较大偏差。与装备制造业强国相比,我国装备制造业综合竞争力依旧较弱。在智能化过程中,存在缺乏核心技术自主创新能力、标准体系不够完善、软件与信息技术发展较弱、缺少行业优秀企业领导和相关先进制造服务业支持等问题。因此,我国的装备制造业智能化发展要从实际国情出发,借鉴国外发展的优秀经验,规划发展的长期路线,抓住全球制造业重新布局的战略机遇,总结出适合中国的发展道路。

我国装备制造业智能化发展需要解决的问题

通过对我国装备制造业智能化关键技术装备、核心支撑软件、工业互联网等方面的分析,对工业强国的对比,以及对六大重点研发领域的展望,针对我国装备制造业发展智能化可总结出以下四点问题。

自主创新能力不强,核心技术对外依存度较高

目前,我国制造业整体创新能力不强,装备制造业的产品和核心技术在国际上缺乏竞争力。在智能化过程中,需要大幅度依赖国外的先进制造设备、关键零部件和关键材料等。同时,在智能控制技术、在线分析技术、智能化嵌入式软件,高速精密轴承等先进技术方面自给率低,对外依赖度高。此外,国产智能装备的性能和稳定性难以满足装备制造业智能化发展的需求,约90%的工业机器人,70%的汽车制造关键设备,40%的大型石化装备、核电等重大工程的自动化成套控制系统、大功率变频技术严重依赖进口。这些核心技术及设备的缺失,增加了建设成本,加大了我国推行智能装备制造的难度。

智能装备制造标准化普及不够,企业建设没有统一标准

装备制造业智能化过程中所需的各种信息集成软件、设备关键部件接口、信息网络端口等,都需要统一连接标准,以实现网络间信息的顺利对接。而中国企业大多注重发展技术,忽略了设备和技术管理的标准化。由于厂商不同,国内大部分传统制造业的自动化系统技术参数缺乏统一标准,导致网络之间、设备之间存在严重的异质异构问题。尽管智能制造的发展带来了新的生产模式,企业对智能制造的生产组织方式和商业运营模式却没有统一的管理标准。2015年,工业和信息化部、国家标准化管理委员颁布了智能制造相关标准建设指南,但由于我国制造业的发展不均衡,标准化普及做得并不好,依然会出现标准缺失、滞后以及交叉重复等问题。

工业大数据应用价值未充分挖掘

在装备制造业智能化的过程中会产生大量数据,企业通过对这些数据进行分析,充分挖掘工业大数据的价值,可优化企业生产、服务和商业模式,为企业智能化提供重要驱动力。工业大数据的分析应用已被各国重视,德国工业4.0战略信息互联技术重点研究大数据分析和工业数据交换,欧盟数字化欧洲工业计划也花巨资打造了数字创新中心,以提升工业大数据在工业智能化中的应用。但这些数据由传感器、物联设备、生产经营业务数据、外部互联网数据组成,数量巨大、来源分散又格式多样,很难得到有效利用。而我国对工业大数据的应用才刚起步,存在核心技术体系不完善、数据整合缺乏统一标准、专业数据服务匮乏等问题。

智能装备制造相关的现代服务业发展滞后

良好的现代服务业是制造业智能化发展的重要驱动,具备完整体系的先进制造服务业对制造业的升级发展有极为重大的作用。智能装备制造实施过程中,智能流程设计、智能监控技术、智能信息集成管理软件等都需要相关现代服务业的支持。而国内在先进生产性服务业的附加值和技术水平方面,与工业发达国家相比还存在一定差距。主要表现在以下几个方面:一是智能制造服务业市场没有完全打开,相关政策体系不够完善,市场化程度低;二是相比于制造服务业,传统服务业占比过大,存在供给过剩情况,而先进生产性服务产业比例偏小,又存在严重供给不足的问题;三是智能制造专业人才培训服务体系发展滞后,相关先进制造服务业人才缺乏,无法满足智能制造技术性人才需求。

对我国装备制造业推行智能化的建议

深入产教研结合,搭建创新研究基地

面对当今科技革命和产业革命的挑战和机遇,制造业的产业升级发展应该坚持基础强化、创新驱动的理念。同时,为了应对智能制造发展大趋势,必须主动调整转变相关教研体系。企业有资金和实践平台,学校有人才和研究技术,二者应发挥各自优势进行合作。学校根据产业发展的要求,科学设置课程和实践,以实际应用为导向,着力培养创新型人才。然后将技术和人才带到企业,将研究应用到实地,进一步发挥人才和技术的作用,逐步构建完善的创新研究基地,着力发展自主创新技术,更加有力地推动科技创新和产业升级。为切实发挥引领和带动作用,高等院校需面向经济社会发展需求,深入推进产教融合,大力培养智能装备制造领域急需的高层次复合型应用人才,加大研究,提升产品和技术的核心竞争力,促进智能制造的发展。

大力推行智能装备制造相关技术与管理的标准化

推行装备制造业智能化,标准要先行。智能装备制造深度融合并集成了信息技术和先进制造,具有较强综合性,是一种新的生产组织方式和商业模式。成体系地推进装备制造业智能化标准制定、提升标准,对产业生态系统升级的整体支撑和引领作用十分必要。政府在行业标准的推行过程中,应该根据实际发展情况,把握建设的总体要求、建设思路、建设内容和组织实施方式,从生命周期、系统层级、智能功能等多个维度去构建参考模型和体系框架。从产教研三方角度共同为行业发展需要的关键元器件、系统软件端口等重要技术制定标准。由政府主导,逐步强制推行,应用于产业生态链的各个阶段,以打造完善的智能化综合标准技术体系,并充分发挥标准化的基础性和引导性作用,指导当前和未来一段时间内智能装备制造标准化工作。

建设数字服务中心,加强工业大数据应用

加强工业大数据应用,可以从两个方面进行。一是由国家联合高校出资建设数字服务中心:首先提升对工业大数据基础的运算能力,然后对嵌入式数据库、关系型数据库、各种工业数据应用软件、数据集成平台进行深入研究;同时,对工业生产中产品设计、制造、物流、销售、售后服务等全生命周期的大数据应用进行标准规划,从技术、安全和管理等多个维度梳理大数据应用标准,使工业大数据标准体系不断健全完善。二是将实际应用与推广结合:完成标准建立之后,融合云计算、物联网、移动互联网技术,由国家主导构建工业大数据共享平台,引导企业进行大数据应用,并针对重点领域,开展大数据标准验证,培养示范型企业,引领更多领域企业,推动发展工业大数据和传统工业协同发展的新模式,使工业大数据更高效地为装备制造业智能化发挥价值。

发展现代智能装备制造服务业

随着智能制造的进一步推广,装备制造业智能化升级对先进制造服务业的需求越来越大。智能装备制造服务业在现代服务业的比重越来越高,在发达国家占比高达70%,我国也应该重视相关高端服务业的发展,增加服务业对智能制造的支持。针对我国智能装备制造服务业发展滞后问题,可以从下面三个方向开展工作:一是打造智能生产网络平台,促进企业之间的信息资源共享及生产配置优化。对智能装备制造服务业的发展给予适当的政策优惠,吸引更多企业加入,扩大相关现代服务业市场,为先进制造服务业提供良好的发展空间。二是建立先进制造服务业生态园,鼓励、引导各方面社会资金投入,发展一批智能制造相关服务管理企业,为装备制造业智能化技术和系统研发提供完善的支撑体系,同时做好生态园高端制造服务业科技知识成果的转化服务。三是构建相关高端创新人才的培养和培训服务体系,制定政策鼓励相关人才培养,做好先进制造服务业的专业性人才输送。

<上一页  1  2  3  4  
声明: 本文系OFweek根据授权转载自其它媒体或授权刊载,目的在于信息传递,并不代表本站赞同其观点和对其真实性负责,如有新闻稿件和图片作品的内容、版权以及其它问题的,请联系我们。

发表评论

0条评论,0人参与

请输入评论内容...

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

    文章纠错
    x
    *文字标题:
    *纠错内容:
    联系邮箱:
    *验 证 码:

    粤公网安备 44030502002758号