侵权投诉

搜索
更多>> 热门搜索:
订阅
纠错
加入自媒体

向“AI+”转变:人工智能产业现状剖析

2017-05-25 00:06
吃瓜天狼
关注

其中,深度学习平台是最基础的平台,将由百度来搭建,核心基础是百度的PaddlePaddle深度学习平台,希望把这个建成中国最大的深度学习平台。听觉感知平台包括语音识别、语音合成、语义理解,还有后端的一些资源,将由百度和清华大学一起做。视觉感知平台,包括检索识别、清晰图像识别、医学影像分析等。这个平台由百度和北京航空航天大学共建。生物特征识别平台包括人脸识别、生物特征识别、身纹识别、虹膜识别等身份识别。这平台会由百度和清华大学共建。新型人机交换平台会融合计算机视觉的AR,这个平台由百度和北京航空航天大学共建。知识产权保护由中国信息通信研究院来打造,会包括知识产权分析、趋势研究以及研发建议等。标准化平台,则由中国电子技术标准化研究院来研究。

2016年 9月22日,腾讯AI实验室宣布成立,将进行AI基础理论研究及工程实现,推出机器人开放平台,将腾讯的计算机视觉等AI核心技术共享给伙伴。2017年5月2日,腾讯宣布成立美国西雅图AI实验室。

据2016年10月13日举行的阿里云栖大会透露出的信息,阿里正在演进,会变成云计算、人工智能的公司。阿里云总裁胡晓明说,过去用IaaS、PaaS和SaaS来区分云计算的模式,而人工智能时代的云计算平台相当于一个云端大脑,不只是提供基础设施、软件或者平台,而是提供云端AI,可以说是AIaaS(AI即服务)。“ET”是阿里云正在着力打造的AI,它的特色在于基于强大的云计算和大数据处理能力,目前ET具备语音识别、图像/视频识别、交通预测、情感分析等技能,并朝着大数据AI的方向发展。现在阿里云正在打造N个ET大脑平台,去年阿里云的ET城市大脑治理城市拥堵让人印象深刻,在今年3月阿里云宣布了ET医疗大脑、 ET工业大脑。 ET医疗大脑其实就是一个开放的人工智能系统。除了阿里云的人工智能科学家参与,大量外部精良的算法与医学经验也将被吸收其中,这样ET将更快地成长为一名高级医师。ET工业大脑是将阿里云的计算能力和深度学习的能力集成到一起,在流程制造的数据化控制、生产线的升级换代、工艺改良、设备故障预测等方面发挥巨大作用,未来ET将成为一个不断吸收专业知识的 “大脑”,指挥各种类型的工业躯体,帮助越来越多的企业实行智能升级。ET工业大脑的行业效应正在显现,新能源、化工、环保、汽车、轻工业、重工业等不同领域的更多企业正在投入智能制造的浪潮之中。

从应用集成平台来看,目前主要集中在语音引擎系统和视频分析软件领域。自然语言处理以及图像识别是目前技术最为成熟并应用最广的两个维度。谈及语音识别,需要提及科大讯飞。语音技术,简单来说就是让各种机器能够像人一样能听会说,其中语音识别是让机器能听懂人讲话,语音合成是让机器能够说话。如今这项技术几乎已经应用到所有行业。2016年,科大讯飞在智能语音及人工智能核心技术上持续保持国际领先地位,持续加大投入讯飞超脑项目,努力实现“从能听会说到能理解会思考”。

早些时间,科大讯飞董事长刘庆峰表示,在语音技术领域,科大讯飞可以击败苹果和腾讯。虽然在公司市值上,双方远不在一个量级上,但是通过建立一个智能语音生态系统,覆盖教育、金融、家电、医疗、手机、汽车,科大讯飞就有可能实现从200亿元市值到千亿元的蜕变。

创新工场的人工智能报告显示,虽然TensorFlow、MXNet等深度学习框架已被数以万计的研发团队采纳,相关开源项目的数量也在飞速增加,但一个完整人工智能生态所必备的,从芯片、总线、平台、架构到框架、应用模型、测评工具、可视化工具、云服务的模块化与标准化工作,尚需三年或更长时间才能真正成熟。中国希望在这一轮人工智能生态竞争中获得优势,而目标比较远大的传统IT公司、BAT等互联网巨头都希望利用各方资源,让自己能够成为AI平台公司,成为AI生态中最有话语权的核心企业。

算法/数据:中国是数据大国

这轮AI浪潮的到来,AI算法的日渐成熟功不可没。麦肯锡不久前公布了一篇长达20页报告,对中国AI当下发展状态进行了全面而细致地介绍。麦肯锡认为,中国在算法开发方面与其他国家相当。实际上,中国的研究者在开发用于语音识别和定向广告的算法方面已经取得突破。得益于全球的开源平台,中国企业能够快速复制其他地方开发的最先进的算法。

然而,中国在基础研究方面落后于美国和英国。一个主要原因是人才短缺。美国超过一半的数据科学家有10多年的工作经验,而在中国,经验不足五年的研究人员高达40%。中国目前拥有不到30个专注于人工智能的大学研究实验室。

此外,中国的AI科学家在计算机视觉和语音识别等领域着力更多,相比其他专门领域不成比例。大学的AI项目也能得益于更高的数学和统计学能力,为在该领域保持全球领先付诸努力。此外也可以考虑改变提供科研经费的模式,以促进更多的创新。

这轮AI浪潮,算法的日渐成熟功不可能,但是现在大家把注意力过多地放在算法上,其实是有偏颇的。向阳表示,人工智能产业的发展离不开海量数据的支撑,数据训练量的大小影响着算法实现的成熟度。有人说,AI这个小孩的成长离不开数据这个养料的喂养,之所以在这个时间节点能够“疯长”起来很关键的原因是有足够丰富的数据。

<上一页  1  2  3  4  5  6  下一页>  余下全文
声明: 本文由入驻维科号的作者撰写,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。

发表评论

0条评论,0人参与

请输入评论内容...

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

文章纠错
x
*文字标题:
*纠错内容:
联系邮箱:
*验 证 码:

粤公网安备 44030502002758号