侵权投诉

搜索
更多>> 热门搜索:
订阅
纠错
加入自媒体

深度剖析大数据在工业4.0智能工厂中的应用

2016-11-14 16:43
冷血の爱
关注

  大数据正以一种革命风暴的姿态闯入人们视野,其技术和市场在快速发展,而驾驭大数据的呼声则一浪高过一浪。于是有人说中国大数据产业有炒作“过热”之嫌,也有人认为大数据投资正当时。随着近些年国家工业信息化进程脚步的不断加快,以及国际社会在工业现代化、工业4.0等方面的不断演进,使得大数据技术在工业行业以及制造业方面也进行了比较深度的技术融合和应用融合,我们就来聊聊在上述领域的大数据应用。

  近年来出现的人力短缺、工资上涨、产品交付期短和市场需求变动大等问题,使得制造业正面临新一波转型挑战。如何在控制生产成本的同时,还能提高生产力与效率,则是转型的主要目的。在这样的背景下,德国、美国等制造业发达国家无不积极推动“工业4.0”。

  “工业4.0”本质上是通过信息物理系统实现工厂的设备传感和控制层的数据与企业信息系统融合,使得生产大数据传到云计算数据中心进行存储、分析,形成决策并反过来指导生产。大数据的作用不仅局限于此,它可以渗透到制造业的各个环节发挥作用,如产品设计、原料采购、产品制造、仓储运输、订单处理、批发经营和终端零售。

  大数据改善订单处理方式

  我们都知道,大数据技术不管是在哪个行业当中进行应用,其最为根本的优势就是预测能力,用户利用大数据的预测能力可以精准的了解市场发展趋势,用户需求以及行业走向等多方面的数据,从而为用户自身企业的发展制定更适合的战略和规划。企业通过大数据的预测结果,便可以得到潜在订单的数量,然后直接进入产品的设计和制造以及后续环节。

  也就是说,企业可以通过大数据技术,在客户下单之前进行订单处理。而传统企业通过市场调研与分析,得到粗略的客户需求量,然后开始生产加工产品,等到客户下单后,才开始订单处理。这大大延长了产品的生产周期。现在已经有很多制造业行业的企业用户开始利用大数据技术来对销售数据进行大数据分析,这对于提升企业利润方面是非常有利的。

  大数据击败传统仓储运输

  由于大数据能够精准预测出个体消费者的需求以及消费者对于产品价格的期望值,企业在产品设计制造之后,可直接派送到消费者手中。虽然此时消费者还没有下单,但是消费者最终接受产品是一个大概率事件。这使得企业不存在库存过剩的问题,也就没有必要进行仓储运输和批发经营。

  工业采购变得更加精准

  大数据技术可以从数据分析中获得知识并推测趋势,可以对企业的原料采购的供求信息进行更大范围的归并、匹配,效率更高。大数据通过高度整合的方式,将相对独立的企业各部门信息汇集起来,打破了原有的信息壁垒,实现了集约化管理。

  用户可以根据流程当中每一个环节的轻重缓急来更加科学的安排企业的费用支出,同时,利用大数据的海量存储还可以对采购的原料的附带属性进行更加精细化的描述与标准认证,通过分类标签与关联分析,可以更好地评估企业采购资金的支出效果。

1  2  下一页>  
声明: 本文由入驻维科号的作者撰写,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。

发表评论

0条评论,0人参与

请输入评论内容...

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

文章纠错
x
*文字标题:
*纠错内容:
联系邮箱:
*验 证 码:

粤公网安备 44030502002758号