侵权投诉

搜索
更多>> 热门搜索:
当前位置:

OFweek工控网

机器人

正文

机器人入门资料:机器人关键技术解析

导读: 基于单一传感器的环境感知方法都有其难以克服的弱点。将多种传感器的信息有机地融合起来,通过处理来自不同传感器的信息冗余、互补,就可以构成一个覆盖几乎所有空间和时间的检测系统,可以提高感知系统的能力。

  一、环境感知

  目前,在结构化的室内环境中,以机器视觉为主并借助于其他传感器的移动机器人自主环境感知、场景认知及导航技术相对成熟。而在室外实际应用中,由于环境的多样性、随机性、复杂性以及天气、光照变化的影响,环境感知的任务要复杂得多,实时性要求更高,这一直是国内外的研究热点。多传感器信息融合(Multi-sensor Information Fusion,MSIF)、环境建模等是机器人感知系统面临的技术任务。

  1、多传感器信息融合

  基于单一传感器的环境感知方法都有其难以克服的弱点。将多种传感器的信息有机地融合起来,通过处理来自不同传感器的信息冗余、互补,就可以构成一个覆盖几乎所有空间和时间的检测系统,可以提高感知系统的能力。因此,利用机器视觉信息丰富的优势,结合由雷达传感器、超声波雷达传感器或红外线传感器等获取距离信息的能力,来实现对本车周围环境的感知成为各国学者研究的热点。

  使用多种传感器构成环境感知系统,带来了多源信息的同步、匹配和通信等问题,需要研究解决多传感器跨模态跨尺度信息配准和融合的方法及技术。但在实际应用中,并不是所使用的传感器及种类越多越好。针对不同环境中机器人的具体应用,需要考虑各传感器数据的有效性、计算的实时性。

  多传感器信息融合的应用

  2、环境建模

  所谓环境建模,是指根据已知的环境信息,通过提取和分析相关特征,将其转换成机器人可以理解的特征空间。构造环境模型的方法分为几何建模方法和拓扑建模方法。几何建模方法通常将移动机器人工作环境量化分解成一系列网格单元,以栅格为单位记录环境信息,通过树搜索或距离转换寻找路径;拓扑建模方法将工作空间分割成具有拓扑特征的子空间,根据彼此连通性建立拓扑网络,在网络上寻找起始点到目标点的拓扑路径,然后再转换为实际的几何路径。

  环境模型的信息量与建模过程的复杂度是一对矛盾。例如针对城区综合环境中无人驾驶车辆的具体应用,环境模型应当能反映出车辆自动行驶所必需的信息,与一般移动机器人只需寻找行走路径不同的是,车辆行驶还必须遵守交通规则。信息量越多、模型结构越复杂,则保存数据所需的内存就越多、计算越复杂。而建模过程的复杂度必须适当,以能够及时反映出路况的变化情况,便于做出应对。

  无人车通过环境建模能够及时反映出路况的变化并作出应对

1  2  3  4  下一页>  
声明: 本文由入驻OFweek公众平台的作者撰写,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。

我来说两句

(共0条评论,0人参与)

请输入评论内容...

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

  • 机械
  • 自动化
  • 单片机
  • 猎头职位
更多
文章纠错
x
*文字标题:
*纠错内容:
联系邮箱:
*验 证 码:

粤公网安备 44030502002758号