侵权投诉

搜索
更多>> 热门搜索:
订阅
纠错
加入自媒体

思维与机器:人工智能时代的预测之术

2016-07-28 10:19
风频浪劲
关注

  商业和知识体系中的两大主要趋势为在复杂且快速变化的世界中进行预测提供了互补性的洞见。一个是,过去40年间,心理学概率推理领域行为科学的研究揭示了一个惊人的发现: 人们日常的判断和预测很大程度上都是基于系统性的、带有偏见的心理暗示,而不是根据证据进行谨慎的评估。这些发现为决策研究带来了根本性的启示,从日常活动(物色棒球手和签订保险合同)到战略(预测时间、价格和项目或商业创意的成功概率),再到生存(评估安全系数和恐怖袭击风险)。

  其基本要义是:单独的判断对行动的指导是不可依赖的。心理学家Philip Tetlock曾花费多年时间做过一个著名的实验,其中顶级的记者、历史学家和政治专家在预测政治事件,比如革命和政变上,并没有比随机选择的普通人拥有更高的准确率。

  第二个趋势是数据驱动的决策和人工智能应用变得越来越无所不在。同样的,这一次重要的经验也是来自行为科学研究。早在20世纪50年代,一个研究小组就已经证明:即使一个简单的预测模型,在预测和决策方面的表现都比人类专家要更好。这带来的启示是,合理建造的预测模型通过帮助人类避开常见的认知陷阱能增强人类智能。当下,在招募棒球队员(以及其他类型职业)、签订银行贷款和保险合同、对抢救室的病人进行分类、安排事业单位工作人员、确定安全系数和评估电影剧本等方面,预测模型已经得到了常规的应用。“点石成金”(Moneyball for X)的例子正在变得越来越多。

  最近,大数据的兴起和人工智能的复兴让人类与机器能力的对比更加突出,也引起了更多的担忧。网络上规模数据库可用性提高,让工程师和数据科学家得以训练能够完成文本翻译、赢得游戏竞赛、分辨照片中的人脸、识别语音、操作无人机和无人车的机器学习算法。由此产生的经济和社会影响是深刻而普遍的。最近,世界经济论坛(WEF)的一份报告预测,接下来的4年中,AI驱动的自动化机器人将会减少超过500万个工作岗位。

  那么,预测本身会怎么样?会有一天,计算机算法会代替做预测的这些专家吗?研究这一问题要聚焦于预测的两个本质——数据科学和人类判断,并且,二者是相互作用的,此外,还要关注机器智能的局限。

  这里有好消息也有坏消息(取决于你的观点)。坏消息是:算法的预测有自身的局限,基于机器学习的AI方法不会完胜;人类的判断在短期内不会被自动地抛弃。好消息是,心理学领域和群体智慧现在提供了新的方法来对人类的判断进行改善和去偏见化。算法可以增强人类的判断,但是不会全盘替代。同时,训练人们如何更好地作预测以及把所有的判断、汇集专家团队的零散信息进行综合,现在仍能达到更好的准确率。

1  2  3  4  5  6  下一页>  
声明: 本文由入驻维科号的作者撰写,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。

发表评论

0条评论,0人参与

请输入评论内容...

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

文章纠错
x
*文字标题:
*纠错内容:
联系邮箱:
*验 证 码:

粤公网安备 44030502002758号