侵权投诉

搜索
更多>> 热门搜索:
订阅
纠错
加入自媒体

工业大数据的真正意义和价值

2016-06-23 11:47
蓝林笑生
关注

  大数据的真正意义在于:通过传感器,实现真实世界的全方位连接,得到全方位实时数据,交换、整合和云计算,逼近真实世界。

  小数据追求“小”、“精”、“优”;大数据追求的是“多”、“杂”、“更优”。小数据时代,受科技水平的限制,只能依据随机样本,大数据则要求所有数据,在小数据时代只有5%的数据符合样本结构化要求,剩下的95%数据都被排斥在外了。大数据则良莠不拒,不求随机样本,而是全体数据;不求精确性,而是混杂性。小数据探求因果关系,即知道“为什么”,以便归纳推理和预测;而大数据只知道相关关系,不必知道因果关系,只要知道“是什么”不必知道“为什么”。小数据追求精确、完美,往往导致不精确、不完美;大数据不求精确、不求完美,反而导致了观测客观世界的更精确、更完美。如2009年谷歌通过大数据分析准确地得出什么地方发现了H1N1禽流感,而且判断非常及时,比美国疾控中心的判断结论要早一两周。美国安大略理工学院卡罗琳·麦格雷戈博士利用软件预测早产儿的病情,不仅比专业医生及时,而且一些病状,医生不能发现,而计算机能发现。这些人都没有医疗方面的专业背景。这样的例子在大数据时代还有很多。正如“大数据时代的预言家”,牛津大学教授维多克·迈尔-舍恩伯格所言:“在不久的将来,世界许多依靠人类判断力的领域都会被计算机系统所改变甚至取代。”这看似是一个矛盾的命题,其实是一个方法论上的革命,即“大数据革命”。

  明代著名思想家洪应明说过:“文章极处无奇巧,人品极处只本然。”一个人写文章写到登峰造极的境界时,其实并没有什么写作艺术可言,只是把内心的真实感受真实地表现出来,让读者从内心产生共鸣。一个人的品德修养达到炉火纯青的境界时,就能“随心所欲不逾矩”,让人回归到纯真朴实的本然之性而已。大数据革命与此异曲同工:“工业革命无奇巧,数据大时只本然”。数据无限多时,就接近真实世界的本原。人类征服世界的前提是认识世界,既然借助大数据已经无限接近了真实世界,也就不必画蛇添足了,还是保持真实数据原貌最好,而且,认识世界的能力越强,人类征服世界和改造世界的能力也越强。

  大数据“多”、“快”“好”“省”的优点奠定了新工业革命的基石。“数据多”,随着科技水平的进一步发展,大数据将无限逼近真实世界。“速度快”,全天候随时实现信息交换,没有时滞。“效果好”,大数据增加了人类的“观测”能力。美国麻省理工学院布伦乔尔森将大数据称之为人类社会行为观测的“显微镜”,就像望远镜让我们能洞察遥远的星河,显微镜让我们观察微小的细胞一样,大数据将帮助我们完成在通常的眼光下无法完成的工作。

  新工业革命,本质上是智能革命,而智能革命的基础是信息化,大数据是根本。没有大数据对客观事物全面、快速、真实、准确的信息反馈,任何智能设备都不可能实现真正的智能。因此,西方学者将即将来临的新工业革命也称之“后信息时代的革命”,归根到底,这是“大数据的革命”。以至于知名信息专家涂子沛说:“数据可以治国,也可以强国”,“得数据者得天下”。借用涂子沛的这句话,我们还可以说:“数据可以治业,数据可以兴业,得大数据者将占据新工业革命之先机!”(作者系上海大治投资管理有限公司董事长、金融学博士后)

  工业大数据的四种用途和两大价值

  随着新一代信息技术与制造业的深度融合,工业企业的运营管理,越来越依赖工业大数据。工业大数据的潜在价值也日益呈现。随着越来越多的生产设备、零部件、产品以及人力物力不断加入工业互联网,也致使工业大数据呈现出爆炸性增长的趋势。

  对工业企业而言,工业大数据有四种区别于一般大数据应用的特殊用途,能够带来两大价值:

  

图 工业大数据的产生和应用

  优化网络:在一个网络系统内实现互联的各种设备或机器,可以通过互联网相互协作,提高网络整体的运营效率。在医疗领域也是如此,如果将到医生和护士等医疗数据互联,数据就可以无缝地传输给医疗机构和病人,等待的时间将会更短,能够更迅速地帮助病人使用正确的医疗设备,从而使得医疗设备利用率更高,医疗服务质量更好。在交通领域也是如此,如果将许多车辆实现互联之后,就会知道自己的位置和目的地,同时能够了解到网络系统内其他车辆的位置和目的地,允许优化路由来寻找到最有效的人工智能解决方案。

  优化运维:通过工业大数据可以实现最优化、低成本,并有利于整个设备或机器的运行维护。例如,将生产设备、零部件都联网之后,将实现一个可监测的生产状态,可以在正确的时间将最优数量的零部件交付到准确的位置,将减少零部件库存需求和维护成本,提升设备或机器的稳定性。

  恢复系统:通过建立广泛的大数据信息,可以帮助网络系统在发生毁灭性打击之后更加快速、有效的进行恢复。例如,当地震或其他自然灾害发生时,可以用智能仪表、传感器和其他智能设备和系统组成的网络来进行快速检测,隔离发生故障的设备或机器,不至于发生串联而导致更大规模的故障发生。

  自主学习:每台设备或机器的操作经验可以聚合为一个大数据,使得整个设备或机器能够自主学习。这种自主学习的方式是不可能在单个机器上来实现的。例如,从许多飞机上收集的数据加上位置和飞行的历史数据,才可以提供有关各种环境下飞机性能的信息。当越来越多的机器连接在一个系统中,产生无数只能数据的结果将是网络系统的不断扩大并能自主学习,而且越来越智能化。

  毫无疑问,通过工业大数据的四种用途,能够为工业企业带来两大价值。即:增加收入、降低成本。(作者:工业和信息化部国际经济技术合作中心 王喜文)

 

<上一页  1  2  3  
声明: 本文由入驻维科号的作者撰写,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。

发表评论

0条评论,0人参与

请输入评论内容...

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

文章纠错
x
*文字标题:
*纠错内容:
联系邮箱:
*验 证 码:

粤公网安备 44030502002758号