侵权投诉

搜索
更多>> 热门搜索:
订阅
纠错
加入自媒体

机器学习变革制造业的十种方式

2016-06-29 09:09
天堂的苦涩
关注

   每个制造商都有很多可能把机器学习运用到自己产业中,通过获得对产品的前瞻性思考会让他们更具竞争力。

  机器学习的核心技术正好能解决现今制造商们面临的问题。从努力维持供应链运转,到定制化生产,再到按时完成订单任务,机器学习算法可以为每个生产环节提供更高的预测精准度。开发出的很多算法都是迭代型的,它们能够持续不断地学习并寻求最优解。这些算法能在几毫秒内反复迭代,让制造商在几分钟内就能找到最佳解决方案,而非之前的数个月。

  机器学习变革制造业的十种方式:

  1、生产力提升 20%,材料消耗率降低 4%。利用数据预测分析和机器学习的智能制造系统有潜力提升生产单元以及整个制造厂级别中机器的收益率。下面的图片来自通用电气(General Electric),并被国家标准协会(NIST)所引用,总结了预测分析和机器学习的运用给制造业带来的好处。

  

  数据来源: Focus Group: Big Data Analytics for Smart Manufacturing Systems

  2、提供了更多相关数据,因此金融、运作及供应链团队能更好地管理工厂和需求方面的约束。

  很多制造业公司的 IT 系统并不完整,导致交叉功能型团队难以完成共同的目标。引入了机器学习,这些团队的洞察力和智慧能被提升到一个全新的水平上,而他们优化产品工作流、存货清单,在制品(WIP)以及价值链决策的目标就会成为可能。

  

  数据来源: GE Global Research Stifel 2015 Industrials Conference

  3、增强组件和局部层级的预测准确度,从而改善预防性维护与维护-修理-大修(MRO)的性能。

1  2  3  下一页>  
声明: 本文由入驻维科号的作者撰写,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。

发表评论

0条评论,0人参与

请输入评论内容...

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

文章纠错
x
*文字标题:
*纠错内容:
联系邮箱:
*验 证 码:

粤公网安备 44030502002758号