侵权投诉

搜索
更多>> 热门搜索:
订阅
纠错
加入自媒体

麦肯锡重磅报告:企业如何挖掘“工业4.0”的价值?

2016-06-13 08:22
野明月
关注

  尤其是当制造商不拘泥于“工业4.0”这个术语,而是把眼光聚焦于那些更有价值的、以业务为导向的应用时,越来越多的企业有了实质性进展。为了实现目标,一些企业甚至重新命名了他们的“工业4.0”规划,以此来摆脱怀疑心理,同时保留那些能真正创造价值的元素。

  为了观察这些复杂而多样化的进程,阐明为什么一些“工业4.0”玩家取得了进展而另一些却没有?我们重复了我们在2015年实施的“工业4.0”全球调查。我们关注行业对“工业4.0”的态度,但更注重实施该理念后取得的进展,尤其是在智能能源消耗、实时供应链优化、远程监控和控制、数字质量管理以及数字绩效管理等领域。

  不过,一些企业仍然在这样几个领域里步履维艰:在企业内部之间的各管理部门协调行动;维护网络安全标准;在与第三方供应商合作时确定数据所有权;激进改革时的勇气以及招聘必要的人才。

  因为制造商仍然在为如何解锁“工业4.0”的价值而拼命挣扎,在这里,我们列出了五个务实的步骤:

  一、制造商应该聚焦部分“工业4.0”应用,而不是全部

  我们观察到,那些能在“工业4.0”实施过程中取得重要进展的制造商大都只关注部分应用,而不是试图同时应用所有的“杠杆”去撬动“工业4.0”。

  制造商正在寻找有潜力被应用到整个制造业组织架构中的五大“工业4.0”应用:从上到下,从头到尾。然而,解锁价值并不需要企业实施所有的“工业4.0”应用。

  这里有一个应用列表,正在实施“工业4.0”的制造商能从中获取最大价值。这份列表并不是对所有的制造商都同样适用,有的制造商可能更适合那些没有出现在列表中的应用。但是,考虑到在这些领域有许多成功案例,我们认为这份列表是一个很好的起点——制造商的首要目标应该是获取价值。

  数字绩效管理

  由于最小的资源需求和简单、快速部署的解决方案,数字绩效管理可谓是一扇通向数字制造业的大门。该应用加速了现有的精益管理流程,帮助企业建立数字化能力和数据驱动的理念体系,为更加先进的数字技术奠定了基础。我们已经见识了一些数字化管理工具,如支持性能对话的数字仪表板,在三个月内实现了高达20-50%的OEE(设备综合效率)提升。此外,数字性能数据支持标准化的计算和报告,使得KPI、工厂和业务部门都能实现共享,这不仅保持了一致性,还方便各个部门随时进行最佳实践分享。

  预测型维护

  尽管预测型维护这个术语已经存在多年,但是在数据可获得性、机器学习技术和云计算方面的重大进展都能为其提供全新的方法:新式预测型维护集成了不同的数据集,并且使用复杂的深度学习算法,比如神经网络。在引入新式预测型维护算法后,机器的寿命增加,而维护成本能够明显下降10-15%。企业要想成功应用预测型维护,需要三个必不可少的组成部分:对各自资产深度维护的专业技术和理论知识,强大的先进分析技术,能够适当灵活变更的管理能力。

<上一页  1  2  3  4  5  6  下一页>  
声明: 本文由入驻维科号的作者撰写,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。

发表评论

0条评论,0人参与

请输入评论内容...

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

文章纠错
x
*文字标题:
*纠错内容:
联系邮箱:
*验 证 码:

粤公网安备 44030502002758号