侵权投诉

搜索
更多>> 热门搜索:
订阅
纠错
加入自媒体

人工智能界“最强大脑” 畅谈AI未来之路

2016-06-17 09:38
小鱼时代
关注

  你如何教导机器?

  Facebook的人工智能研究总监Yann LeCun:如何为机器制定教学计划。

  人工智能的传统定义是,机器以通常我们认为属于人类的方式,来执行任务和解决问题。有一些任务我们觉得很简单——识别照片中的物体、驾驶汽车——可是这些任务对于AI来说特别困难。机器可以在棋盘上超越人类,可是那些机器的程序从本质上来说是体力活,机器受到程序的限制。一个30美元的设备就能在棋类游戏上超越我们,可是它没法做——也没法学会做——其他所有事情。

  这就是为什么我们需要机器学习。给机器展示几百张猫的照片,机器就会训练自己的算法,学会更好地识别照片中的猫。机器学习是所有大型互联网公司的基础,让公司可以进行搜索结果排名,为特定用户选择最相关的内容和建议。

  深度学习是以人类大脑为基础,要复杂得多。与机器学习不同的是,深度学习可以教会机器忽略声音或图像中所有不重要的信息——呈现一种能够反映无限多样性的层级性世界观。正是深度学习为我们带来了无人车、语音识别、以及有时候比放射学专家更擅长识别肿瘤的医疗分析系统。

  虽然有了这些值得赞叹的进步,我们距离与人类同样智能的机器还很远——我们的机器甚至与老鼠的智能相比都差得很远,我们大约只见证了AI实力的5%。

  是时候重新思考就业吗?

  百度首席科学家吴恩达:AI将如何改变未来的就业。

  如今在美国,驾驶货车是最常见的职业之一。几百万人在东西海岸之间运输着货物,以此维持生计。然而,很快所有这些就业机会都将消失。无人车将替代人类司机在路面行驶,并且更快、更安全、更高效。有这么好的事,还有哪家公司会选择更昂贵、更容易犯错的人类司机呢?

  类似的劳动力变革在历史上也有先例。在工业革命前,90%的美国人在农场工作。蒸汽技术和制造业的兴起让许多人失业了,但是也创造了很多新的工作机会——还创造了很多当时人们无法想象得到的新领域。这个排山倒海般的巨变是在两个世纪的过程中慢慢展开的,当时,美国有足够时间来适应变化。农民们直到退休都在种田,而他们的下一代去上学,成为了电工、工厂领班、房地产商和食品化学家。

  而卡车司机们就没有这么幸运了。他们的职业,还有另外几百万人的职业,很快就会过时。在智能机器时代,数量众多的人们将没有工作的能力,或者有被淘汰的风险。我们可能会见证20世纪30年代经济危机以来最大的失业大潮。

  1933年,富兰克林·罗斯福的新政帮助了大量失业人口,并且帮助重启了美国经济。更重要的是,它帮助美国从一个农业社会转变为一个工业社会。罗斯福的“公共工程署”雇佣了失业者来建造桥梁和新的高速公路,改善了美国的交通基础建设。这些改善为当时非常先进的新技术应用奠定了基础:汽车。

  我们需要有一个针对21世纪的新政,针对人工智能会带来的新就业机会打造培训项目。我们需要重新训练卡车司机和办公室助理,来打造未来的数据分析师、旅行规划师等等其他我们现在还不知道自己有需求的职业。美国南北战争前(19世纪60年代前)的农民,绝对无法想象自己的儿子会当电工,而现在,我们也很难说AI在未来会创造什么样的工作机会。不过我们清楚的是,必须采取革命性的措施,才能完成从工业社会到智能机器时代的转变。

1  2  3  4  下一页>  
声明: 本文由入驻维科号的作者撰写,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。

发表评论

0条评论,0人参与

请输入评论内容...

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

文章纠错
x
*文字标题:
*纠错内容:
联系邮箱:
*验 证 码:

粤公网安备 44030502002758号