侵权投诉

搜索
更多>> 热门搜索:
订阅
纠错
加入自媒体

三维重建技术助力机器人感知真实的世界

2016-05-24 10:04
棒棒书香
关注

  而单目视觉恰恰相反,结构光的硬伤是“见光死”,它只适合光线较暗的环境,如果周围的光线很强,摄像头就很难准确的识别亮点,所以结构光法到了室外就显得有些水土不服了。

  看到这里,也许你就理解了为什么英特尔选择在一个光线很暗的环境下演示搭载Realsense模组的昊翔TyphoonH壁障功能。说句题外话,因为单目和双目有本质的区别,最近闹得不可开交的大疆(双目视觉原理)和Yuneec昊翔侵权案被业内人士认为并不成立。  

  无论是单目和双目,其测距方法都是基于三角测距法,测距范围最大只能做到5-8m,这就决定了视觉方法不适合无人驾驶汽车,其最大的应用场景还是室内扫地机器人以及游戏设备。另外,这种方案的硬件成本只有几百元人民币,非常适合消费类的电子产品。 

  因为采用视觉方案的产品有很多,我们只以Realsense为例看下视觉方案的产品特性。 

  根据英特尔的信息,Realsense有近距离使用和远距离使用两个版本,近距离版本内置了F2003D图像处理器的芯片,一个红外激光发射器和一个接收图像信息的红外传感器,其采用的是典型的单目 结构光的方案;远距离版本则采用了R2003D图像处理芯片,另外比近距离版本多配置了一个红外传感器(双目),这意味着该版本直接模仿人眼的“视差原理”,通过打出一束红外光,以左红外传感器和右红外传感器追踪这束光的位置,然后用三角定位原理来计算出3D图像中的“深度”信息。后者每秒可以采集1000万个3D点,可以识别跟踪手上的22个关节点,根据手部运动来实现手势操控,并能识别面部的78个特征点,实现面部解锁、表情识别。

  除了Realsense,Kinect、和LeapMotion以及国内的奥比中光等都用的是基于视觉的三维建模方案,当然任何一家厂商的方案都有自己的特点,根据各自应用场景的不同都有一定的差异。

  激光雷达

  既然视觉方案存在这么多的缺陷,就必然需要另外一种技术来完成它不能完成的使命,激光雷达就是其中之一。作为机器人、无人机和无人驾驶领域的新宠,激光雷达是这两年才开始火起来的。

  激光雷达之所以能够受到业界的追捧,很关键的原因就是激光解决了上述视觉方案中受光线强度影响的问题,如果在室外,用它来实现壁障、路径规划等功能再合适不过了。 

  和视觉方式一样,激光雷达实现三维重建大体也可以分为两类,一类是基于三角测量法,另一种被称为ToF测距法,这两种方式不仅仅是文字和原理上的差异,二者的性能以及价格都不在一个等级上。 

  基于三角测量算法的激光雷达多为非实时性激光雷法,其原理如下:激光从激光头发射,到物体表面之后会形成一条反射光,另一侧的阵列CCD可以实时感应到反射回来的信息,因为激光头的发射角度α和信号接收端的角度β是已知的,激光头和CCD的距离为固定的,根据正弦定理就可以算出雷达与物体的距离。这种方案技术门槛不高,开发周期也不长,硬件成本可以做到几百元的级别。 

<上一页  1  2  3  下一页>  
声明: 本文由入驻维科号的作者撰写,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。

发表评论

0条评论,0人参与

请输入评论内容...

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

文章纠错
x
*文字标题:
*纠错内容:
联系邮箱:
*验 证 码:

粤公网安备 44030502002758号